
Journal of  Statistical Physics, Vol. 66, Nos. 1/2, 1992 

On the Approximation of Invariant Measures 

Fern Y. Hunt 1 and WaLter M. Miller 1 

Received January 8, 1991; final June 18, 1991 

Given a discrete dynamical system defined by the map r: X ~  X, the density of 
the absolutely continuous (a.c.) invariant measure (if it exists) is the fixed point 
of the Frobenius-Perron operator defined on LI(X). Ulam proposed a numeri- 
cal method for approximating such densities based on the computation of a 
fixed point of a matrix approximation of the operator. T.Y. Li proved the 
convergence of the scheme for expanding maps of the interval. G. Keller and 
M. Blank extended this result to piecewise expanding maps of the cube in N~. 
We show convergence of a variation of Ulam's scheme for maps of the cube for 
which the Frobenius-Perron operator is quasicompact. We also give sufficient 
conditions on r for the existence of a unique fixed point of the matrix 
approximation, and if the fixed point of the operator is a function of bounded 
variation, we estimate the convergence rate. 

KEY WORDS: Invariant measure; Perron-Frobenius operator; quasicom- 
pact operator; strongly stable convergence; piecewise expanding maps; ergodic 
transformations. 

INTRODUCTION 

Chaot ic  dynamics,  the r andom and  complex behavior  of trajectories of a 
determinist ic  dynamica l  system, are frequently due to the presence of a 

chaotic attractor.  Wha t  is the relat ionship between its complex and  delicate 
structure and the dynamics  we observe? Approaching  this problem from 
the point  of view of the ergodic theory of dynamical  systems, we are led to 
the s tudy of invar ian t  measures. In  this work we are part icularly interested 

in absolutely con t inuous  invar ian t  measures (when they exist) that arise 
from iterating a map  z: X--* X, where X is a compact  space. The F r o b e n i u s -  
Per ron  operator  is an impor t an t  tool for f inding such measures. 

We will assume that (X, ~4,/~) is a measure space where X is a 
compact  separable metric space, ~/  is a Borel sigma-algebra, and  /~ is a 
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r-invariant probability measure. We will also make use of an a priori 
probability measure m with respect to which p is absolutely continuous, 
and in order to introduce the Frobenius-Perron (FP) operator the following 
property of ~ will be assumed. 

D e f i n i t i o n .  The map z: J ( ~  X is said to be nonsingular with respect 
to # i f /~ (z -~A)=0  whenever/~(A) = 0. 

If # is an absolutely continuous measure with density f,  then the 
images of sets in d have a corresponding measure p o ~-  1, where 

/A o "C- I (A)=  ]A('c- I(A))  

Since r is nonsingular,/~ o r ~ is also absolutely continuous with respect to 
m. The Radon-Nikodym theorem applies (since the measures here are 
finite) and we can deduce the existence of a density function in Ll(m) such 
that ( : )  

I~oz l (A )=fAP~f  dm, V A ~ d  

This equation defines a unique linear operator P~ which can be 
extended to all of Ll(m). P~ is in fact a Markov operator. That is, for 
f 6Ll(rn): 

(a) P~f>~O i f f~>0.  

(b) IlP~fl[ = [If hi. 

Thus, P~ maps density functions to density functions. It is well known (17) 
that the fixed point of the Frobenius-Perron operator f *  is the density of 
an absolutely continuous invariant measure and conversely. In this case f *  
is called a stationary density. Despite this characterization, finding such a 
fixed point is a difficult task, since P~ is a operator in L 1, which is not a 
Hilbert space, and P~ in general is not compact. 

Much progress has been achieved in studying the FP operators of a 
class of piecewise linear expanding maps of the interval known as Markov 
maps. This work has been done by Boyarsky and his co-workers and 
others. ~21) These maps have the nice property that the Frobenius-Perron 

X " of a operator has a matrix representation. Given a partition P =  { i}i=1 
closed interval X, a map r: X--* X is said to be Markov if: 

(a) v maps partition endpoints of ~ to partition endpoints. 

(b) z is piecewise expanding on X. 

Despite these rather specialized properties, Markov maps can be used to 
solve the problem of approximating the stationary densities of a wide class 
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of maps. Gora and Boyarsky t6) proved that if z is an expanding map of an 
interval such that: 

(i) Ir'(x)l ~>2> 1 for x c X  ~ the interior of X~; and 

(ii) r l/r'J is a function of bounded variation; 

then r can be uniformly approximated by a sequence of piecewise linear 
Markov maps whose stationary densities converge in L ~ to the stationary 
density of P~. This theorem was extended in ref. 7 to nonexpanding maps 
that are a.c. conjugate to expanding maps. Thus the approximation 
problem is reduced to solving a sequence of eigenvector problems for a set 
of matrices. Despite this progress, there is no corresponding result for maps 
defined on higher-dimensional subsets in Nd, d>~2 for example. In this 
work we consider an extension of a method for approximating stationary 
densities proposed by S. Ulam in 1960, who was interested in maps of the 
interval. As in the method of Gora and Boyarsky, the approximation 
problem is reduced to solving a sequence of finite-dimensional eigenvector 
problems. This is done by approximating P~ in some sense by a finite- 
dimensional operator Pn(r). Ulam conjectured that if P~ has a stationary 
density f * ,  then the sequence {f ,} of fixed points of P , ( r )  should converge 
in L ~ to f * .  This was proved by Li (~8) for maps ~ such that inf x I(vk)'l > 2 
for some integer k ~> 1 and was generalized to the multidimensional case for 
maps by Blank/2) Earlier, G. Keller, using the fact that FP operators of 
expanding maps are quasicompact, proved the convergence of Ulam's 
method for expanding maps of the interval, and in effect the case con- 
sidered by Blank. Keller made extensive use of the spectral properties of 
these operators and he showed how these properties determine the ergodic 
properties such as the number of ergodic components and mixing proper- 
ties. These lead to precise statistical descriptions of chaotic behavior, for 
example the establishment of functional central limit theorems, strong laws, 
etc.(9,13) 

Motivated by ref. 15, we will prove the convergence of Ulam's method 
for r r for some fixed r. In our proof we do not assume the Lasota-Yorke 
inequality that leads to the use of the ergodic theorem of Ionescu-Tulcea 
and Marinescu (1~ to establish that P,  is quasicompact. Here we will just 
assume that P~ is quasicompact and treat the question of convergence as 
a problem in spectral approximation. By a small modification of our 
arguments we can also show a convergence result for the eigenvectors of all 
the eigenvalues of P~ of modulus one (which in the quasicompact case are 
roots of unity). Our approach also yields a rate of convergence for the 
method which in the case considered by Li is O(1/n),  a faster rate than the 
rate given in ref. 14, but is consistent with numerical calculations. (5} Our 
main result is the following. 
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Convergence Theorem. Suppose P~ is quasicompact and that 1 
is a simple eigenvalue. Let f *  be the unique stationary density. Then for 
some integer r: 

(a) There exists a fixed point fn of P,,('c r) such that f ,  ~ f *  as n -~ 
in L 1. 

(b) I f f ,  is a fixed point of P,(z r) that is also a density, f , , ~ f *  as 
n - ~  i n L  ~. 

The theorem requires that z be iterated r times. We find in practice 
that r is small. The proof depends on Chatelin's work on the spectral 
approximation of linear operators (~) and it can be found in the second 
section of this paper. Note that if z is weakly mixing, then 1 is indeed a 
sample eigenvalue. 

We have recently developed a numerical implementation of this 
method, Ill) so sufficient conditions for its convergence are of practical 
interest. It is also of interest to know sufficient conditions on z that imply 
the existence of a unique approximating f , .  Before stating this result, two 
preliminary definitions will be needed. 

Def in i t ion .  A measurable subset B c X  is said to be negatively 
invariant if 

z - I B ~ B  

Def in i t ion.  A map z: X ~  X is reducible if there exists a nontrivial 
negatively invariant subset of X. 

By nontrivial set we mean a nonempty subset B that is #-measurable, 
where # is a probability measure, with 0 < ~t(B) < 1. If no such set exists, 
z is said to be irreducible. When z is ergodic and f *  > 0 we show that z is 
irreducible with respect to an invariant measure # iff it is ergodic. The 
irreducibility of z means that the stochastic matrix associated with P,(z) is 
irreducible. The results of the first section then imply the existence and 
uniqueness of a fixed point of the operator P,(z). 

1. Existence of Fixed Points of P.(t) 

In this section we will proceed with the construction of the Pn('c) and 
discuss several properties of Pn(~) and the associated fixed point f , .  This 
discussion closely follows Li. (18) We then show that if z is irreducible, 
and the stationary density f * > 0  a.e. [m]  on X, the fn are unique. By 
modifying the definition of z on a set of m-measure zero, we can relax the 
positive condition on f *  and arrive at the same conclusion. 

Let {Ii}i=ln be an equipartition of X. That  is, X =  U'i=~ Ii and 
m(I~) = 1/n. There is an associated finite-dimensional subspace of Ll(m), 
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A n = { f ~ L l( m): f (x )  = Y~7= 1 Ci 1 i (x) }, where 1 i is the indicator function of 
Ii. One can associate An with the vector space of n-dimensional row vectors 
over R. Define the operator P~(~): A, ~ An by 

P , ( ~ ) l i =  ~ Po.lj 
j =  1 

where P~j = m(r 1(/j) c~ I~)/m(I~). Extending the definition by linearity to all 
of An, we have, for f~An,  

j = l  i = 1  

so that the action of P,(v) on f can be represented by vector-matrix 
multiplication. Any f e L  ~ can be mapped into A, by the projection Q, 
defined by 

" 1 f~ Q , f =  ~ cil,, Ci-m(ii  ) f 
i = 1  i 

k o m m a  1.1. For f s A  n, Pn(z ) f  = Q n P ~ f  

Proof. It suffices to show that 

fAQnP~li=fAPn(~)l ~ for 

We have that 

A 6 d  

R H S =  ~ fA P~ ~" Pum(Ac~[J) 
j = l  j = l  

On the other hand, Qn P~ l i=  ~Y= l cj l j, where 

1 dm =1__}__ CJ=m(lj) f,+P~li m(Ij) f~-~(6 ) lldm 

The last equation follows from the defining relation for the FP operator. 
Thus, @= [l/m(/1) ] m(z-l(Ij)c~ Ii) and hence 

j=l  -~J)  rn(Iic~z l(Ij))lilAdm 

= ~ m(I i c~ T-~(Ij)) m(A ~ Ij) 
j = 1 m(li) 

= ~ P~rn(A n Ij) 
j = l  

which is just RHS. QED 
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The approximations to f * ,  the stationary density of P~, are obtained 
from a solution of 

P.('c) f .  =- f~ 

This can be reduced to the solution of the vector equation 

u , P . ( ~ ) -  u.  (1.1) 

where P,(z)  denotes the matrix representation of the operator. J ;  is 
computed from the components of n, by f,]l~=(n(n))k, where r~(n) is a 
solution of (1.1) subject to the condition that ( l /n) ~2~= 1 n(n)k = 1. We call 
n(n) a stationary vector. Now if the matrix P,(z)  is irreducible, n(n) is 
unique. (1) We will show that the irreducible maps have the property that 
for every n, P , ( r )  is irreducible. First we will show that these maps are 
ergodic. 

Proposition 1.1. If r is irreducible, then it is also ergodic. 

Proof. Suppose ~ is not ergodic, so that there is a nontrivial 
invariant set B. For  such a set we certainly have ~-1B ~ B. Thus, r must 
be reducible. QED 

In the following proposition we assume m(X)= 1, and that f * > 0  
a.e. [m],  where f *  is the stationary density of the invariant measure #. 

Proposition 1.2. Let {[i} i= 1,2 ...... be a arbitrary equipartition of X, 
where z: X ~  X is a irreducible map. Then P,(z) is an irreducible matrix. 

Proof. Let us suppose that P,(z)  is reducible. Then there exists a 
permutation matrix (9 such that (gP,(r)(9 t is of the form 

where J and K are square submatrices. Now, by assumption, f *  > 0 on J( 
a.e. [m],  and it follows that #(Ij) > 0 for all j = 1, 2,..., n. Thus, every column 
of the matrix in (1.2) has a positive element and so in particular K is not 
a zero submatrix. To see this, suppose that for some j, rn(~-l(Ij)) = 0. Since 
g is a.c., /~(~-l(ij)) -=- 0. But # is z-invariant, so ~(Is)=0, contradicting the 
observation we have just made. Thus, for all j, m(~ l(ij)) > 0 and since 

m(z-"(Ij)c~Ii)>~m z-~(Ij)c~L =m(~ ~(Ij))>O 
i = 1  i 1 
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we see that the sum of elements in the j th  column is positive and hence 
every column must have some positive element. Denote by K the set of all 
indices i , j  appearing in the submatrix K; and set J equal to the 
corresponding set for J. We define sets A and B to be 

A = U 1~, B - -  U /i. (1 .3 )  
ieY j e R  

The form of (1.2) implies that no subset of A of positive # measure can be 
mapped by r out of A. Thus, any point y in B that is the image of a point 
in X must be the image of a point in B except for a subset of #-measure 
zero. That is, z 1B c B a.e. [# ]  and moreover # (A )>  0 and # ( B ) >  0. Since 
A c~ B has m-measure zero and thus #-measure zero, and A w B = X, then 
A is a nontrivial set. Let W = A - ~ - I ( A ) .  We have # ( W ) = 0  for Wis the 
set of points in A whose images are not in A. Let ~ =  Uk>~o T k(W) and 
_~ = A - r We claim that if x e A, then ~(x) e.~, that is, if x e A and 
x r ~#/', then ~(x) e A and z(x) r ~W. Now x r r implies x q~ W, which with 
x e A  implies that xe~-~(A). This implies ~(x)eA. Second, xq~ ~g" implies 
~ ( x )  r W for any k/> 0, so afortiori rk+ ~(x) = rk(~(X)) (~ W. This implies 
that ~(x)r ~ ,  so we have proved that 

~AcA 

It is not hard to show that the complement /}= X\A of A is negatively 
invariant. We have 

since ~ has #-measure zero. Thus, A is nontrivial and hence /~ is 
nontrivial. And thus r is reducible, contradicting the hypothesis. QED 

The assumption that f *  > 0 a.e. [m]  can be relaxed in the following 
way. Let 5 O = { x E X :  f * ( x ) > 0 } .  Since l = ~ x f * d m = S , y f * d m ;  
m ( J )  = 0 would imply that ~ f*  dm = 0, hence m(Sf) > 0. Furthermore, 
no subset of 5f of positive m-measure is mapped out of 5O. To see this, 
suppose that A is a set for which f * ( x ) = 0 ,  x e A  and ~ - IA c5 O ;  then 
m ( r - l A ) > 0 ,  We must have # ( r - l A ) - - ~  ,Af*dm>O. But since # is 
invariant, # ( A ) >  0, which cannot be true if f * =  0 on A. It follows then 
that by modifying a set of m-measure zero, v can be made to be a map 
v: 5 ~ ~ 50. We define a new a priori measure 

m(so ~ u)  r~(u) = 
m(5o) 
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Repeating the previous discussion, one can construct a corresponding 
matrix P.(z). Now the modified map is irreducible on ~ because the 
original map was and f * > 0  a.e. [r~] on ~ .  Thus by Proposition 1.2, 
_P~(z) is irreducible, f *  is the stationary density of the Frobenius-Perron 
operator P,  with respect to r~. Indeed, # ( A c ~ ) = # ( A )  for all A~s~. 
Thus, 

I~(z-~A)= l~(z-lA ~ SC)= f,-~A l ~o f*  dm 

/ ,  

I~(A) = )A ls~f* dm 

And thus we have 

f A f ,  drh=fAf ,  ls~ l j  

We can prove that ergodic maps are irreducible. The equivalence of 
the two properties then follows from this statement and Proposition 1.1. 
Despite this, irreducibility may have the advantage of being easier to check 
in this context than ergodicity. The proof is a simple consequence of the 
fact that z is conservative (~6) with respect to g, but for convenience we will 
provide a proof. We begin by supposing that ~ is reducible. It is not hard 
to show that this is equivalent to the existence of a nontrivial set A for 
which z(A)~ A. By the Birkhoff individual ergodic theorem (not assuming 

is ergodic here) there exists an L~(/~)-integrable function q)* such that 

l n - - 1  
~o*(x)= lira - ~ 1A(r a.e. [~] (1.4) 

n--* OV H k ~  0 

We claim that ~ * ( x ) = l ~ ,  where ~ = U ~ = 0 z - k ( A ) .  If x ~ ,  then 
zkx ~ A for some k >/0 and hence ~Px ~ A for p >~ k. Thus, the right-hand 
side of (1.4), that is, ~0*(x), is just 1. If x r 3((, then Cx r ~ '  for every k and 
hence every term on the right-hand side is 0. Thus, ~o*(x)= 0. 

It is clear that z ~ = Jt ~ If, on the other hand, x ~ ~(~, then ZkX e A 
for some k and therefore z(zkx)=r which implies that zx~ ocf. 
Thus, x~z-~Jg or ~t~ c z-~o~t ~. It is apparent then that ~ is invariant. 
That is, 

~f  =~ 1 ~  (1.5) 

Now Birkhoff's theorem also implies that 

fxq)*(x) /~(dx) ---fx 1A(X) #(dx) 
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Therefore kz(Jg) =/l(A). It follows that if A is nontrivial, then ~f~ is also. 
Hence ~ is not ergodic. Thus we have proved the following result. 

Proposition. If f * > 0 ,  then r:X--+X is ergodic with invariant 
measure/~ iff it is irreducible with respect to/~. 

2. C O N V E R G E N C E  

The results of the previous section show that the ergodicity of 
implies that the matrix Pn(r) is irreducible for each n and hence there is a 
unique density f ,  for each n. To determine sufficient conditions for 
convergence, we turn our attention to the operator P~. Assume that P~ has 
the spectral representation in some Banach space V contained in L ~ where 
V is a dense subset of L 1. We have 

P ~ = C + D  (2.1) 

where C is an operator on L 1 with finite-dimensional range and simple 
eigenvalues on the unit circle of C, and a (possibly) nontrivial null space, 
but no other eigenvalues. D is an opeator on L 1 such that IjDll < 
const.  ? < 1. Using a basic inequality of Lasota and Yorke, one can show 
that (2.1) is valid for a class of piecewise g2 monotonic maps of the interval 
r for which Ir'(x)] > 1 except at endpoints of the intervals of monotonicity. 
The observation that (2.1) holds for piecewise expanding maps of the 
interval is due to Keller (13) and Hofbauer and Keller (9) and is a conse- 
quence of the ergodic theorem of Ionescu-Tulcea and Marinescu (see ref. 20 
for a proof that does not use Ionescu-Tulcea and Marinescu). P,  was 
proved to be quasicompact with respect to the space of L 1 functions with 
bounded variation. There are extensions to higher-dimensional maps. (2's'14} 
Quasicompact operators have the representation 

where 

P~ = P~ = K(r) + Dr 

P 

K(r) = ~ e2~i~~ (2.2) 
j = l  

and where Pj is an eigenspace projection with finite-dimensional range, 0j 
is rational, and IlDrlt ~ c o n s t .  ?r, where 0 < 7 < 1.(4> Now there are finitely 
many distinct operators K{I), I~> 1. To see this, note that K(I + L)= K(I), 
where L - 1  is the least common multiple of the denominators of the 0~. 
Let X be the set of all eigenvalues associated with the operators K(I). Now, 
K(I) is compact, hence 1 is an isolated eigenvalue for each L (4) We may 

822/66/I-2-35 
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thus define a positive distance d =  dist(1, 2 7 - { 1  }). Choose h > 0 so that 
the ball Bh(1) is completely contained in the complement of 2 2 - { 1 }  and 
2h < d. We will denote the circumference of the ball by F. If 

h .  = rain dist(x, X - { 1 }) = dist(F, 22 - { 1 } ) 
x ~ F  

h*>~ h. Given an 0 < 5 < h, one can for suitably chosen r and n isolate the 
spectrum of p , (zr)  and P~r in the same set of 5-balls. 

L e m m a  2.1. Given an 5, 0 < 5 < h, r can be chosen so that for all 
sufficiently large n, 

(~(P.(~*)) c B~((~(Pe)) 

(B,(a(P,r)) = {z ~ C: dist(z, o'(Prr))< ~3}.) 
Proof. If N~,t is defined by the inequality 

sup IIR(z, K(l))lb <~ N~,z 
z ~ B z / 2 ( a ( K ( I ) )  c 

where R(z, K(I)) is the resolvent operator of K(l) and if N~ = sup~ N~,t = 
supt~L N~,t, then for every z~ (~t<L B~/2(~(K(I)) ~ we have 

IIR(z, K(l))l] <~ N~ 

Choose 6 ~ > 0  so that 6~<.l/N~. Then r can be chosen so that 
I[P,r- K(r)lj = [ID~ll < 6 , .  Now Q , P ~ -  K(r)= Q,O~ + ( Q , -  I) K(r). Since 
II (Q, - I) gbl -~ 0 as n --, ~ uniformly for g in a relatively compact  subset of 
L1, (4) and K(r) is compact,  I}(Q,-I)K(r)]]~O. Therefore for all 
sufficiently large n, NQ,Pe-K(r)II <61. We can apply Lemma VII6.3 of 
ref. 4, noting that 1/N~ <~ 1/N~,t, to conclude that a(P~r) c B~/2(a(K(r)) and 
cr(Q,P~r) ~B~/2(a(K(r))). Thus, a(Q,P~)~ B~(a(P~O). Finally note that 
a(p , (~) )ca(Q,P~) .  Q E D  

By construction, dist(F, Z)  > 5. Therefore the last part  of the proof  of 
Lemma 2.1 implies that 

F c P(Pe) n p(Q,P~) (2.3) 

for all sufficiently large n, where p(A) is the resolvent set of A. In fact, if 
r~ is the value of r chosen in the lemma, then (2.3) holds for all r >/r~ and 
n>~n(r~). 

Since 1 is an isolated eigenvalue of Pr we can assume that F constains 
no other eigenvalues in its interior. This can be done by choosing r so that 
IIDrl I < 1. To see this, suppose 2 is an eigenvalue on the unit circle r 1, 

K(r)~o + D~g0 = 2go (2.4) 
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for some q~ # 0. Applying Dr to both sides and using the fact that D~K(r) = 
K(r)D r = 0, we obtain 

Dr(DrqO)= ]tD~( p ( 2 . 5 )  

If Drop S0,  then 2 would be an eigenvalue of Dr, which would imply that 
12[ < 1. Thus, D~0 = 0, so that (2.4) implies that 2 is an eigenvalue of K(r). 
Thus, d(1, 2)>~ d and Bh(1 ) contains no other eigenvalues of a(P,r) on the 
unit circle. 

If 12[ < 1 and is in the approximate spectrum of Per, there exists a 
sequence of elements ~o n of L ~ such that II~on}l = 1 and 

P~rq)n = 2(Pn + gn 
o r  

(D,.-  ).)~o~=h, + e, (2.6) 

where 41e, l[ ~ 0  and h,~=-K(r)~o,. We can suppose that Dr~o,v~0 for 
sufficiently large n, for if this were not the case, 

K(r)q~ ~ = 2~o, + e, 

would hold for infinitely many n, implying that 2 is in the approximate 
spectrum of K(r). Thus, 2 would satisfy 12[ = l. By renormalizing the 
nonzero elements of {D~0,} and renumbering, one can conclude from 
(2.5) that 2 is in the approximate spectrum of D~. We therefore have the 
inclusions 

~a(Pvr) c 0-a(Dr) ~ a(D~) ~_ {2: [).[ ~< r,(D~)} (2.7) 

where 5~(P,r) is the approximate spectrum of P,, that is not on the unit 
circle and r~(D~) is the spectral radius of Dr. Suppose ). is a point of the 
residual spectrum that is outside the disc of radius r~(D,). Then there is 
some boundary point of a(P,~) that is not contained in the disc and is not 
on the unit circle. This, however, contradicts the fact that such boundary 
points are in the approximate spectrum of P~r and therefore must be 
contained in the disc by (2.7). Consequently, 

sup 121 ~< lID~}l 
)~ ~ a ( P ~ r )  

[.~l < 1 

Let 1 -  I[D~II =~/ and choose h so that 2h <rain(d, r/); r0 is some fixed 
value of r such that liDs01] < 1. Since q increases with r, h remains 
unchanged and Bh(1) contains no other points of a(P~r) for r/> r o. 

The projection onto the eigenspace corresponding to the part of 
~r(Q~P~) contained in the interior of F is 

- 1  ( ,  

proj(Q~ P~) = ~ l R(z, Q,P<) dz 
Jr 
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Let proj(P~r) be the projection onto the eigenspace generated by f* .  The 
next lemma is a consequence of Lemma VII.6.5 of ref. 4. 

k o m r n a  2.2. There exists a 8 z > 0  such that if IIP,~r-Q,,,P,~,II <62, 
then Ilproj(P~r) - proj(Q~P~r)lj < 1. 

ProoL Recall that 

_ --1 f R(z, dz proj(P~r)-  2~i r 

and apply the lemma in ref. 4. QED 

It follows from this that if r is chosen to satisfy the conditions 
of Lemma 2.1, the dimension of the ranges of proj(P~,) and proj(Q,,P~,) 
are the same. (3) In fact, we may choose r so that }lP~r-QnP~rj] <6, 
6=min(3~,  62), and this can be done without changing the choice of h 
(therefore the choice of e) and so that (2.3) is still true. Some consequences 
of this discussion can be summarized as follows: 

1. As n--.oo, Q,P~rf--.P~rffor a l l f a L  1. 

2. For  all z e F  there exists an N(z) such that for all n>N(z),  
z ~ p(Q,P~) and IIR(z, Q,P~)II <~ M(z). 

3. dim(range of proj(Q,,P~)) = dim(range of proj(P~)). 

Consequence 1 follows from the fact that Q, g ~ g for all g ~ L 1 and con- 
sequence 2 is a result of (2.3) and consequence 1. 

The convergence of the operator T~ - z  to T - z  is said to be strongly 
stable on F ( T ~ - z  s~ T - z  on F) if T~ and T satisfy properties 1-3. 
With this condition we can obtain the convergence result stated in the 
introduction as an application of the following proposition due to 
Chatelin. (3) 

P r o p o s i t i o n  (Chatelin(31). Suppose 1 is a simple eigenvalue of 7", 
and T, , -  z ss, T - z  on F, and ~0, is an eigenvector of T~. There exists an 
eigendirection {~p} not depending on n such that dist(~o,, {~0})--*0 as 
n-~ oe. For  any eigenvector ~o, there exists an eigenvector q), such that 
q0n --~ (p as n --. ~ .  

The eigendirection specified in the theorem must be in the one-dimen- 
sional subspace generated by {f*}.  If f , = ~ o , ,  then dist(f , ,  {q)})= 
d(f,,y,,),  where d is the Banach space distance and y,e{q~}. Let 
y~ = c~,f*, ~, s C. There is no loss of generality in assuming e ,  >~ 0, since 
the d distance between f ,  and {q~} can always be decreased by doing so. 
It is n o t  hard to show then that c~,--* 1. Hence f,, ~ f * .  Part (a) of the 
convergence theorem follows directly from the first conclusion of the 
proposition. 



On the Approximation of Invariant Measures 547 

As we indicated in the Introduction, P,  is assumed to have a simple 
eigenvalue at 1. Lemma 2.3 shows that the same is true for P,r for infinitely 
many r. 

k e m m a  2.3. If 1 is a simple eigenvalue for P, ,  and P,  is quasi- 
compact, then 1 is a simple eigenvalue for P~ for (r, q ) =  1, where q is the 
order of root of unity eigenvalue of P, .  

Proof. First note that the representation in (2.2) and the fact that 
D~P~=O, P~Pj=O, ira j, ~2~ imply that 1 is a semisimple eigenvalue of P,~. 
Let E be the set of all eigenvectors g satisfying Jl glJ = 1 for which P,~ g = g. 
We assumed that P~ has no eigenvalue ), such that 2 q = 1 with g.c.d. (r, q) 
greater than one. Call G the linear subspace of L ~ spanned by the vectors 
{g, p~g,..., p~ g,..., p~-lg: g6E}.  G is invariant under P~. Since P~ is 
quasicompact, p ~ = p r  is also and therefore G is finite dimensional/'4) 
There are therefore a finite number of eigenvectors b ~ G with eigenvalues 
2 of P~ whose algebraic eigenspaces span G. 2 must satisfy U =  1. To see 
this, note that if v = P~ g for some g, P;v = v, and this relation can be 
extended to the linear span of such vectors, which of course contains b. 
Thus, we have P;b = b = ,~rb. The assumption on r implies that )~ = 1. Thus, 
G is contained in the algebraic eigenspace of P~ corresponding to 1. The 
dimension of G must therefore be one and hence 1 must be a simple 
eigenvalue of P~,. QED 

If (r, q ) >  l, then for some k, (r +k ,  q ) =  1 and conditions 1-3 hold 
and thus the convergence theorem applies to P~,+k. 

C o n v e r g e n c e  R a t e  

We suppose that ~ is map of the interval for which f *  is of bounded 
variation. (14'17~ If, in addition to this, 1 is a simple eigenvalue of P~, it was 
also proved <14~ that the rate of convergence is O(ln n/n). The following 
theorem of Chatelin leads to a rate O(1/n). 

T h e o r e m  (Chatelin). Let T n satisfy the conditions of the proposi- 
tion. Then for n large enough, 

dist(q~,, K e r ( T -  2)) = 0(~.) 

where e, = I [ (T-  T,)P(] and where P is the projection P: L l ~ k e r ( T - 2 ) .  

Proof. See ref. 3. 
In our setting e,= ] i ( I -Qn)f*]b,  which satisfies ~,~< V(f*)/n, where 

V(f*) is the variation o f f * ,  giving us the required rate. If r is a map on 
0~"~ ~" for which f *  is, for example, Lipschitz, then one can obtain a 
similar estimate. 
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